【快捷查询】pytorch\xformers\python版本对应关系 | pytorch\xformers\python version correspondence


注意:仅指预构建的轮子 (其实之前的构建没那么全的,不知道是哪位大好人给补齐了各版本的。。。所以其实做这个表也没啥用了)

xformers pytorch python cuda
0.0.27.post1 >= 2.4 py38-py311 11.8 & 12.1
0.0.27 >= 2.2 py38-py312 11.8 & 12.1
0.0.26.post1 >= 2.1 py38-py311 11.8 & 12.1
0.0.26 >= 2.1 py38-py311 11.8 & 12.1
0.0.25.post1 >= 2.1 py38-py311 11.8 & 12.1
0.0.25 >= 2.1 py38-py311 11.8 & 12.1
0.0.24 >= 2.1 py38-py311 11.8 & 12.1
0.0.23.post1 >= 1.12 py38-py311 11.8 & 12.1
0.0.23 >= 1.12 py38-py311 11.8 & 12.1
0.0.22.post7 >= 1.12 py38-py311 11.8 & 12.1
0.0.22.post4 >= 1.12 py38-py311 11.8 & 12.1
0.0.22.post3 >= 1.12 py38-py311 11.8 & 12.1, 12.1 For Only Linux
0.0.22.post2 >= 1.12 py38-py311 11.8 For Only Windows

注意,0.0.27.post1的预构建whl文件需要pytorch2.4.0

Installing xFormers

conda install xformers -c xformers
  • (RECOMMENDED, linux & win) Install latest stable with pip: Requires PyTorch 2.3.1
# cuda 11.8 version
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118
# cuda 12.1 version
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121
  • Development binaries:
# Use either conda or pip, same requirements as for the stable version above
conda install xformers -c xformers/label/dev
pip install --pre -U xformers
  • Install from source: If you want to use with another version of PyTorch for instance (including nightly-releases)
# (Optional) Makes the build much faster
pip install ninja
# Set TORCH_CUDA_ARCH_LIST if running and building on different GPU types
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
# (this can take dozens of minutes)

声明:烈火灼冰|版权所有,违者必究|如未注明,均为原创|本网站采用BY-NC-SA协议进行授权

转载:转载请注明原文链接 - 【快捷查询】pytorch\xformers\python版本对应关系 | pytorch\xformers\python version correspondence


离离沐雪踏轻尘